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Abstract Straightforward mathematical techniques are used innovatively to form
a coherent theoretical system to deal with chemical equilibrium problems. For a sys-
tematic theory it is necessary to establish a system to connect different concepts. This
paper shows the usefulness and consistence of the system by applications of the the-
orems introduced previously. Some theorems are shown somewhat unexpectedly to
be mathematically correlated and relationships are obtained in a coherent manner. It
has been shown that theorem 1 plays an important part in interconnecting most of the
theorems. The usefulness of theorem 2 is illustrated by proving it to be consistent with
theorem 3. A set of uniform mathematical expressions are associated with theorem
3. A variety of mathematical techniques based on theorems 1–3 are shown to estab-
lish the direction of equilibrium shift. The equilibrium properties expressed in initial
and equilibrium conditions are shown to be connected via theorem 5. Theorem 6 is
connected with theorem 4 through the mathematical representation of theorem 1.

Keywords Systematics · Traditional fields · Equilibrium theory ·
Chemical education

1 Introduction

Despite the fact that chemical equilibrium is a well-established field, when compli-
cated phenomena are involved, conventional methods can be difficult to apply readily
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in a straightforward manner [1]. In particular it does not provide enough tools to deal
with facts such as the equilibrium shift always initiates a reaction to decrease the con-
centration of added species even though more of that species might be produced by the
shift. Many chemists are unaware that the equilibrium can shift to produce more added
species. It is well-known that mathematical approaches can reveal the real nature of
the chemistry behind phenomena and can facilitate the development of a theory to
further expansion in different areas. We have introduced a novel theoretical system
for chemical equilibrium in part I of this work [2] by introducing the following six
theorems which can be readily explained via mathematical techniques.

1: The reaction quotient never decreases as a reaction proceeds forward and never
increases as the reaction proceeds backward.
2a: On diluting an equilibrium system by adding an inert species, the equilibrium
will shift to the side of the chemical equation with the greater sum of coefficients.
2b: On increasing Nx by adding a reactive species if Dx were kept unchanged, the
equilibrium would respond by shifting to the side of reducing the amount of that
species.
3a: The chemical equilibrium will shift to reduce the change in an intensive variable
caused by the change in its corresponding extensive variable; (3b) but will increase
the change of an extensive variable caused by changing the corresponding intensive
variable.
4: When a species is added to a system, the new equilibrium concentration of that
species will always be increased.
5: A property of a chemical equilibrium for a closed system is independent of whether
an amount of species i is expressed at time t = 0 or at any subsequent time t.
6: The optimum conditions for maximizing the mole fraction of a target product in
a chemical reaction are that the ratios of the initial number of moles for reactants
and products are, respectively, equal to the ratio of their coefficients in the balanced
chemical equation.

Detailed proofs of these six theorems are provided in Part I of this work [2]. In this
present paper, some unexpected correlations revealed by mathematical application of
these six theorems are discussed in depth. The usefulness of these theorems in under-
standing specific examples of chemical equilibrium is revealed mathematically. We
first present a graphical representation of theorems 3 and 4, which gives a general over-
view of the complete system. Subsequently we include several examples which show
how the theorems provide a variety of mathematical tools for the successful analysis
of equilibrium problems. Some equations from Part I of this work are repeated here
and referred to as Eq. I-n, where n is their designation in Part I. The context of each
of these equations will be found in Part I.

2 Extension and application of the six theorems

2.1 A graphical representation of theorems 3 and 4

Our first illustration is based on graphical representations of theorems 3 and 4 and pro-
vides a chemical visualization of the mathematical system and facilitates an intuitive
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understanding of our system. The mathematical basis of the graphical representations
is discussed in detail. The relationship of Eqs. I-33–I-35 in paper I to theorem 3 is also
discussed here.
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2.1.1 Correlation between theorem 3 and I-33 and I-34

In an equilibrium system, xi, the mole fraction of species i can be presented by Eq. I-36.

xi = xi (ni , ζ ) = xi [ni , ζ(ni , Qx )] (I-36)

where ni, represents the amount of species i, ζ the reaction extent and Qx the reaction
quotient. On differentiation, while keeping Qx equal to the equilibrium constant Kx,
we obtain
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The first term on the right hand side of Eq. I-42, namely
(

∂xi
∂ni

)
ζ
, represents the

effect on the intensive variable xi when the extensive variable ni is changed while the
reaction extent, ζ , is kept constant. i.e. the effect on xi when i is added if the chemical
reaction is frozen. This term is always greater than zero as shown in I-43, which is
derived from the definition of xi in Eq. I-5.
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Equation I-43 signifies an open system so that an increase in ni from equilibrium
will cause xi to increase and this is shown graphically in Fig. 1 where xi increases
from (a) to (b). Alternatively a decrease in ni by removing species i from the system
will cause xi to be decreased from (a) to (b′) as shown in Fig. 2. Figures 1 and 2 also
show other consequences of theorems 3 and 4 as will be demonstrated below.
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Fig. 1 A graphical representation of theorems 3 and 4. The figure describes what happens when species i is
added to an equilibrium system. The solid arrow represents a real process from (a) to (c). It is equivalent to
the combination of two processes from (a) to (b) and from (b) to (c) which are represented by dotted lines.
Neither of these latter two processes can occur independently without the other. The line across a dotted
line represents an impossible process. The mole fraction of i increases from (a) to (b) when i is added.
By theorem 3, the intensive mole fraction xi is decreased by chemical reaction, from (b) to (c). These two
processes result in a final real equilibrium shift from (a) to (c). Theorem 4 states that the equilibrium shift
can never reduce the mole fraction to (d), which is lower than (a), the initial mole fraction

The second term on the right hand side of Eq. I-42
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, represents the effect on xi of a change of ni when the chem-

ical reaction begins to respond [from (b) to (c) represented in Fig. 1 or from (b′) to
(c′) in Fig. 2]. This product is always negative as specified by Eq. 1. It accounts for a
closed system where the change of ni is caused by ζ .

(
∂xi (ni , ζ(ni , Qx)

∂ζ

)
ni

(
∂ζ

∂ni

)
Qx

< 0

which can be written in a more concise form as
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< 0 (1)

n0
i can be used instead of ni according to theorem 5. Equation 1 signifies that the

equilibrium will decrease the amount of change caused by the first term on the right
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mole fraction

old equilibrium mole fraction (a)

by theorem 3 the mole fraction is
raised from (b') to (c') when the
chemical reaction starts to respond.

remove i, the mole fraction
of i decreases from (a) to (b')
presupposing that the reaction
does not respond

non-equilibrium mole fraction (b')

new equilibrium mole fraction (c')

(a)

(b')

(c')

(d')

equilibrium shif t

This mole fraction (d') cannot be reached as theorem 4 states that the new equilibrium
concentration cannot be higher than the previous one (a)

Fig. 2 The equilibrium shifts from (a) to (c′) according to theorems 3 and 4. Note that this figure is equiv-
alent to Fig. 1 rotated about a horizontal axis. When species i is removed from an equilibrium system, then
xi changes from (a) to (b′). By theorem 3, xi would decrease by chemical reaction, from (b′) to (c′). The
final xi decreases from (a) to (c′), but never to (d ′), which is higher than (a) the initial mole fraction

of Eq. I-42 as is explicitly stated by theorem 3a. Equation 1 can be derived from
Eqs. I-33 and I-43. Thus, Eqs. 1 and I-33 are equivalent and are both mathematical
representations of theorem 3.

The conclusion of the above analysis is that theorem 3 and 4 can be readily described
by Figs. 1 and 2. The equilibrium shift from (a) to (c) obtained by adding species i
shown in Fig. 1 can be separated into two interlinked processes (indicated by dotted
lines). First that the intensive variable xi changes from (a) to (b) when the chemical
reaction is independent of any outside perturbations (Eq. I-43); second that xi changes
from (b) to (c) when it does respond (theorem 3a or Eq. 1). The equilibrium shift
cannot reduce the concentration lower than the initial concentration (theorem 4 or
Eq. I-45). i.e. concentration change from (b) to (d) can never happen. Theorem 3b
is also represented in Fig. 1. For example if no chemical reaction occurs, in order to
make xi change from (a) to (b), an amount of i is required to be added. If the same
change from (a) to (b) is to be maintained under a chemical equilibrium, the addition
of more i is subsequently required whether the equilibrium is shifted to reduce or
increase the added species. In the above discussion, Eq. 1 is derived from Eqs. I-33
and I-43. Equation I-33 can also be proved by validating Eq. 1. Starting from Eq. I-40
and considering Eqs. I-81 and I-12, we can obtain Eq. 2.
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Now rearranging Eq. I-40 and then replacing the numerator and denominator by
Eq. I-81 and I-12 respectively, we obtain Eq. 2. Note that in Eq. 2 we have used eq

I-44 to convert
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Here the denominator k is positive following Eq. I-12. Thus, Eq. 1 is proved from
Eq. 2. Equation 3 can also be obtained from Eq. 2, or from I-34 taking Eq. I-12 into
account. Eq. I-12 is related to the Schwarz inequality and thus so is theorem 3.
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(
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)
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< 0 (3)

It is seen from the derivations that Eqs. 1 and 3 are equivalent mathematically and
that Eq. 3 is mathematically equivalent to Eq. I-34 in the light of theorem 3.

2.1.2 Correlation between theorem 3 and Eq. I-35

It is now possible to show that Eq. I-35 is consistent with theorem 3. VdP is used below
in Eq. 8 which implies that P and V are conjugated intensive and extensive variables.
The relationship of the corresponding conjugated variables can be expressed in partial
derivative form as shown by Eq. I-41. If xi in Eq. I-42 is replaced by P, and ni by V,
then the graphical representation Figs. 1 and 2 can be changed to represent Eq. I-41
when V is decreased and increased, respectively.

123



J Math Chem (2013) 51:741–762 747

(
∂ P

∂V

)
S,A

=
(

∂ P

∂V

)
S,ζ

+
(

∂ P

∂ζ

)
S,V

(
∂ζ

∂V

)
S,A

(I-41)

For an ideal gas system, when V increases, then P will decrease. i.e.

(
∂ P

∂V

)
S,ζ

< 0 (4)

Thus, Eq. I-35 requires
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Eq. 5.
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It can be shown that the first term on the right hand side of Eq. I-41 is negative (Eq. 4).
i.e. the pressure decreases as the volume increases if the chemical reaction is frozen.
It can be represented by the change from (a) to (b′) in Fig. 2 when the system expands.
The second term gives the increase in pressure caused by the equilibrium shift speci-
fied by Eq. 5 to reduce part of the decrease in the intensive quantity P caused by the
first term, which is exactly stated by theorem 3. It can be represented by the change
from (b′) to (c′) in Fig. 2. It is easy to understand from the above explanation why Eqs.
1 and 3 include <0 while Eq. 5 includes >0 and why Eqs. I-33–I-35 have a similar
form. This is the reason why it is more logical to use Eqs. I-33–I-35 rather than Eqs.
1, 3, and 5 as the mathematical representation of theorem 3.

Equation 5 above can be derived from Eqs. 4 and I-35. Conversely, Eq. I-35 can
also be derived from Eq. 5 as follows. We first define a quantity A in Eq. 6 which
represents the negative partial derivative of the internal energy U with respect to ζ at
constant entropy S and volume V; or alternatively the Gibbs free energy G at constant
T and P; or the Helmholtz free energy (work function) F at constant T and V.
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where μi represents the chemical potential of species i. Some relevant thermodynamic
relationships are given by Eqs. 7–10.

dU = T d S − PdV − Adζ (7)

dG = −SdT + V d P − Adζ (8)

d F = −SdT − PdV − Adζ (9)

A = A(S, V, ζ ) (10)
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From Eq. 10 we can derive Eqs. 11 and 12.
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We obtain Eq. 13 from Eq. 7.
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By inserting Eq. 13 into Eq. 12, then Eq. 14 is obtained. The final term on the right
hand side of Eq. I-41 is related to Eq. 14.
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We can prove Eq. 15 from Eqs. 6, 16 and I-30.

(
∂ A

∂ζ

)
S,V

< 0;
(

∂ A

∂ζ

)
T,V

< 0;
(

∂ A

∂ζ

)
T,P

≤ 0 (15)

We know that G is a minimum at equilibrium. From Eq. 6 we can obtain Eq. 16.
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)
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=
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)
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Thus, Eq. 5 can be proved from Eq. 14 by using Eq. 15, and Eq. 5 is a natural conse-
quence of Eqs. 14 and 16. It should be noted that Figs. 1 and 2 only apply to conjugated
variables such as P and V or concentration xi and amount ni of the added species i as
detailed in Appendix 1.

We have shown that Eqs. 1, 3 and 5 are the mathematical expressions of theorem 3.
At the same time we showed that from these equations we can obtain the equivalent
Eqs. I-33–I-35. Equations 1 and 3 include <0 but Eq. 5 includes >0. However, Eqs.
I-33, I-34, and I-35 all include −1 so that they are not only more uniform and elegant
than their counterparts but they can be directly related to the chemistry expressed in
theorem 3.

2.2 Judging the direction of equilibrium shift

An important aspect of equilibrium theory is the ability to predict the direction of any
equilibrium shift. A variety of mathematical approaches are used in this section to
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determine the shift. It will be shown here that theorems 1–3 can be consistently used
to establish the direction of equilibrium shift for an ideal gas system at constant T and
P.

2.2.1 Relationship between Eq. 1 and theorem 3

Equation 1 which is correlated with theorem 3 can be used to obtain the direction
of the shift in the equilibrium. When species i is added to the system, the extensive
quantity ni is increased. The first term, on the right hand side of Eq. I-42, namely Eq.
I-43 shows that xi will increase before any equilibrium shift occurs. It is necessary
to reduce the intensive quantity xi according to theorem 3a before a new equilibrium

can be formed. After the addition, the system becomes closed. If
(

∂xi
∂ζ

)
ni

> 0, then

ζ needs to decrease in order to reduce xi, which is a necessary consequence of the-
orem 3a that requires any equilibrium shift to decrease the change in the intensive
quantity xi. As a consequence, the addition of species i will result in a decrease in

ζ . Thus
(

∂ζ
∂ni

)
Kx

< 0 or
(

∂ζ
∂ni

)
Qx

< 0. So, theorem 3 is consistent with Eq. 1 in

which the two derivatives have opposite signs. On the other hand, if
(

∂xi
∂ζ

)
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< 0, ζ

must increase in order to reduce xi according to theorem 3a. Note that in this case
species i is added which means that an increase in ni gives rise to an increase in ζ ,

thus
(

∂ζ
∂ni

)
Kx

> 0 or
(

∂ζ
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)
Qx

> 0, conforming with Eq. 1.

2.2.2 Relationships between theorems 1 and 3

From Eq. 2
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(
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∂ζ

)
ni

xi
1

Qx

(
∂ Qx
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we see that Eq. 1 of theorem 3 connects with Eq. I-9 relevant to theorem 1. Equation 3
represents another mathematical expression that can be correlated with theorem 3. It

conforms to theorem 1 in judging the direction of equilibrium shift. If
(

∂ Qx
∂ni

)
ζ,n j

> 0,

then an increase in ni causes an increase in Qx by freezing the chemical reaction.
According to theorem 1, the equilibrium will be shifted backwards to reduce the value
of Qx to Kx. Thus an increase in ni must cause ζ to decrease when the freeze is lifted,

resulting in
(

∂ζ
∂ni

)
Kx

< 0. Thus, the two derivatives have opposite signs as specified

by Eq. 3. Therefore, theorems 1 and 3 are self-consistent. If
(

∂ Qx
∂ni

)
ζ,n j

< 0, then an

increase in ni causes a decrease in Qx. According to theorem 1, the equilibrium will

be shifted forwards to increase the value of Qx, resulting in
(

∂ζ
∂ni

)
Kx

> 0, conforming

to Eq. 3. Equation 3 and theorem 1 are therefore also self-consistent.
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2.2.3 Relationship between theorems revealed by statement S1

For a systematic theory it is necessary to establish coherent connections between dif-
ferent concepts. Here we take the following statement S1 from [3] and show that it is
consistent with theorems 1–4.

S1: The addition at constant T and P of a small amount of reacting species i in
an ideal-gas equilibrium mixture will shift the equilibrium to produce more i when
two conditions are both satisfied: first that the species i appears on the side of the
chemical equation for which the sum of coefficients is the greater and second that
the equilibrium mole fraction xi of species i satisfies Eq. 17.

xi >
νi

�ν
(17)

2.2.3.1 Relationship between S1 and theorems 1 and 3

If the added species i is on the side of the chemical equation for which the sum of
coefficients is the greater, then, νi and �ν will definitely have the same sign. Note that
the sign of �ν will be positive or negative, depending on which side of the reaction
equation has the greater sum of coefficients. When species i is added (dni > 0) as
a product (νi > 0 ), and the product i appears on the side of the equation with the
greater sum of the coefficients (�ν > 0), we have νi

�ν
> 0. Corresponding result can

be obtained for reactant. When xi <
νi
�ν

> 0, from Eq. I-81, then
(

∂ Qx
∂ni

)
ζ,n j

> 0 for

�ν > 0 if i is a product (νi > 0) and
(

∂ Qx
∂ni

)
ζ,n j

< 0 for �ν < 0 if i is a reactant

(νi < 0). Since the equilibrium will restore Qx to Kx according to theorem 1, the
equilibrium will be shifted to decrease the amount of added species i. As i is added
continuously, the equilibrium concentration xi will be increased according to theorem

4. When xi >
νi
�ν

> 0, then Eq. I-81 requires that
(

∂ Qx
∂ni

)
ζ,n j

< 0 for �ν > 0, where

i is a product and
(

∂ Qx
∂ni

)
ζ,n j

> 0 for �ν < 0, where i is a reactant. According to

theorem 1, the equilibrium will be shifted to increase the amount of added species i.
Although the amount of i is increased by the shift, xi still decreases via the equilib-
rium shift according to theorem 3. This will be discussed further in Sect. 2.2.3.5. For
example, from row (i) to row (ii) in Table 2 when 1 mole of N2 is added while the
equilibrium is frozen, it is shown that xN2 is increased from 0.5000 to 0.6973. When
a new equilibrium is reached in row (iii), more N2 is produced as indicated by S1
since xN2 = 0.6973 >

νi
�ν

= −1
−2 and xN2 is decreased from 0.6973 to 0.6966 though

nN2 is increased, conforming to theorem 3 or Eq. 1. If species i is on the side of the
chemical equation for which the sum of coefficients is the smaller, then νi and �ν will
possess opposite signs. The condition xi >

νi
�ν

< 0 will then always be true. From
the same analysis, it can be concluded that the equilibrium will be shifted to decrease
the amount of i. Thus it is confirmed that S1 is a natural consequence of theorems 1
and 3.
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2.2.3.2 Relationship between S1 and theorems 2 and 4

The two conditions in S1 can also be obtained from theorem 2. When νi
�ν

< 0, it can
be shown easily that both effects stated by theorems 2a and 2b shift the equilibrium to
the same side of the chemical equation. Both effects result in a decrease in the amount
of the added species i, which conforms to the above statement S1.

By contrast however, when νi
�ν

> 0, the effects stated by theorem 2a and 2b shift
the equilibrium in opposite directions. Suppose i is a product. Let us start from the
original equilibrium mole fraction of species i when it satisfies the condition specified
in Eq. 18 before the product i is added.

xi = ni

nT
<

νi

�ν
(18)

Equation 18 signifies that
∣∣∣ νi

ni

∣∣∣ is greater than
∣∣∣�ν

nT

∣∣∣.

Qx (ni + dni ) = Qx (ni )

(
1 + νi dni

n j

)
(

1 + �νdni
nT

) (I-79)

From Eq. I-79, it can be seen that in this case the effect of theorem 2b is greater than
that of theorem 2a and therefore the equilibrium shifts to reduce the amount of added
species. As stated by theorem 4 the new equilibrium concentration xi will increase as
species i is added. Thus, theorem 4 ensures that Eq. 19 will eventually become valid
as i is added.

xi = ni

nT
>

νi

�ν
; or

∣∣∣∣ νi

ni

∣∣∣∣ <

∣∣∣∣�ν

nT

∣∣∣∣ (19)

Equations I-79 and 19 signify that the effect of theorem 2a is greater than that of 2b at
this time and so, for example, the equilibrium will shift to the right to provide more of
the added product since i is on the side with the greater sum of coefficients. A similar
result can be obtained for reactant. From the old equilibrium (i) to the new equilibrium
(iii) in Table 2, xN2 increases from 0.5000 to 0.6966 even though the volume V of the
system is expanded by theorem 2a thus conforming with theorem 4. In fact Eq. 19 is
equivalent to Eq. 17. Thus, S1 is a natural consequence of theorems 2 and 4.

2.2.3.3. The fundamental nature of theorem 2

Theorem 2 is an important part of our chemical equilibrium approach but it also has
significant consequences when considered in isolation. From the above discussion, it
is easy to understand that the direction of equilibrium shift predicted by theorems 2a
or 2b is fixed whatever the value of xi. However it can be noted that the equilibrium
shift in S1 changes direction at the condition specified by Eq. 20.
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xi = νi

�ν
> 0 (20)

Thus, the effects stated in theorem 2, which are extracted from the application of math-
ematical techniques, are more fundamental and go beyond the propositions considered
in statement S1.

2.2.3.4 Relationship between S1 and the maximum fractional conversion ratio
of reactant

Another point deserves to be mentioned here. When reactant i (νi < 0) is added and
the reactant side of the equation has the greater sum of the coefficients (�ν < 0), then
according to the above discussion, the fractional conversion of another reactant j, for
an ideal gas system at any given temperature and pressure, has a maximum when Eq.
20 is satisfied [4]. Note that in this case both the numerator νi and the denominator
�ν are negative, so xi will be positive. Thus, before Eq. 20 is satisfied, xi is small and
the effect stated by theorem 2b dominates. Under these conditions, the equilibrium
will shift to reduce both reactants i and j, thus increasing the fractional conversion of
j. When Eq. 20 is satisfied, the fractional conversion of j reaches a maximum. It is
easy to prove mathematically that Eq. 20 is equivalent to Eq. I-53 from theorem 6.
When Eq. 17 is finally satisfied for reactant i, the effect stated by 2a dominates and the
equilibrium will shift to produce more i and j. Thus, the conversion ratio of reactant j
will decrease. When the added species is a product, theorems 4 and 6 becomes relevant
and this will be discussed below in Sects. 2.3.2 and 2.3.3.

2.2.3.5 Relationship between S1 and theorems 2 and 3

Even for the case where the equilibrium of the reaction shifts to produce more of the
added species i as stated in S1, the equilibrium shift initiates a process from (b) to
(c) in Fig. 1 to reduce the value of the intensive variable xi as specified by theorem
3 or Eq. 1. This is because the equilibrium shifts to the side with the greater sum of
coefficients, thus increasing nT. The increase in nT which dilutes the system will have
a greater effect than that created by increasing ni, i.e. the effect specified by theorem
2a is greater than that specified by 2b in such cases. The relevance of theorem 2 in this
case can be detailed mathematically. As mentioned above, Eq. I-44 is complementary
to Eq. I-82 in that they only differ from each other by a positive factor. A similar
relationship is found between Eqs. 21 and I-62 or I-79.

xi (ni + dni ) = xi (ni )

(
1 + νi dni

n j

)
(

1 + �νdni
nT

) (21)

Thirdly, Eq. 1 is complementary to Eq. 3 as discussed in Sects. 2.2.1 and 2.2.2. Thus,
theorem 2 can be applied similarly in this case. When xi >

νi
�ν

< 0, then according to
both theorems 2a and 2b, the reaction will be shifted to reduce xi as shown by Proofs
P5 and P6 in Part I of this work. When νi

�ν
> 0, the effects of theorems 2a and 2b will

123



J Math Chem (2013) 51:741–762 753

shift the reaction in different directions and the effect of theorem 2b is dominant when
xi <

νi
�ν

> 0. Thus, the decrease in ni reduces xi. When xi >
νi
�ν

> 0, the effect of
theorem 2a is dominant. Thus, the increase in nT reduces xi. Two other mathematical
expressions of theorem 3 [5,6], namely Eqs. 22 and 23 are discussed below.

2.2.4 Judging the direction of equilibrium shift by Eq. 22

Theorem 3 can also be expressed mathematically in terms of the specific intensive
variable xi and its extensive variable ni, as Eq. 22.

(
dxi

dt

)
Kx

δni < 0 (22)

The significance of Eq. 22 is detailed below. When species i is added then δni > 0.
xi will increase [from (a) to (b) as in Fig. 1] when the reaction extent does not change.
However, if the reaction starts to respond, xi will decrease according to theorem 3

[from (b) to (c) as in Fig. 1], resulting in
(

dxi
dt

)
Kx

< 0 thus conforming with Eq.

22 for the chemical reaction; Note the subtle difference between theorems 3 and 4
in that the equilibrium is shifted to increase the equilibrium value of xi [from (a) to
(c) in Fig. 1] according to theorem 4. Alternatively when i is removed from the sys-
tem (δni < 0), xi will decrease [from (a) to (b’) in Fig. 2] when the reaction does

not respond. According to Eq. 22
(

dxi
dt

)
Kx

> 0 when the chemical reaction starts

to respond, resulting in an increase in xi [from (b′) to (c′) in Fig. 2] thus confirming
theorem 3.

2.2.5 Judging the direction of equilibrium shift by Eq. 23

Theorem 3 also conforms with the thermodynamic principle that a process with �G <

0 is spontaneous for a system at constant T and P. When the specific intensive vari-

able
(

∂G
∂ζ

)
T,P,n0

i

and its extensive variable
(

dζ
dt

)
Kx

are considered, theorem 3 can be

expressed mathematically by Eq. 23.

(
∂G

∂ζ

)
T,P,n0

i

(
dζ

dt

)
Kx

≤ 0 (23)

Equation 23 can be easily proved. Since

G = G
(

T, P, n0
i , ζ

)
(24)

For a spontaneous process, then

dG =
(

∂G

∂n0
i

)
T,P,ζ

dn0
i +

(
∂G

∂ζ

)
T,P,n0

i

dζ ≤ 0 (25)
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The equilibrium shift process is a closed system and therefore the total number of

moles will not change with time, thus,

(
∂n0

i
∂t

)
T,P,G

= 0, so Eq. 26 can be derived

from Eq. 25.

(
dG

dt

)
T,P,n0

i

=
(

∂G

∂ζ

)
T,P,n0

i

(
dζ

dt

)
T,P,G,n0

i

≤ 0 (26)

It can readily be seen that Eq. 26 is the same as Eq. 23. G is a minimum at equilibrium.
i.e. spontaneously always proceeds to reduce G till a minimum is reached. So, when(

∂G
∂ζ

)
T,P,n0

i

< 0, then dζ
dt > 0 according to Eq. 26 so that G is reduced, resulting in

a forward reaction; Conversely when
(

∂G
∂ζ

)
T,P,n0

i

> 0, then dζ
dt < 0 according to Eq.

23, resulting in a backwards reaction so that G is again reduced.

2.3 Connections revealed by the theorems

2.3.1 Conditions for maximizing the fractional conversion ratio of a reactant

We will show an example for which theorem 5 is particularly important. The maxi-
mum fractional conversion condition for reactant B with Eq. 27 is shown in [4] to be
when the initial mole ratio satisfies Eq. 28.

a A + bB = cC + d D (27)

ζ = 0 n A(0) = n0
A = R nB(0) = n0

B = 1 nC (0) = 0 nD(0) = 0 (i)

ζ = ζ(t) n A(t) = n0
A − aζ nB(t) = n0

B − bζ nC (t) = n0
C + cζ nD(t) = n0

D + dζ (i i)

Rows (i) and (ii) of Eq. 27 indicate the number of moles at time 0 and time t
respectively.

R = a

b − c − d
where a + b > c + d (28)

R is the initial amount of A in Eq. 27. This condition is just a different side of the
same coin expressed by Eq. 20 in Sect. 2.2.3.3 which allows the extreme value of the
reaction extent to be obtained. The theoretical basis of this has previously been given
in Sect. 2.2.3.4. The difference is that Eq. 20 is expressed in terms of equilibrium
concentration while Eq. 28 is expressed in term of n0

i or R. We can show that Eqs. 28
and 20 are equivalent. Inserting Eq. I-5 into Eq. 20, we obtain Eq. 29.

n0
i + νiζ(∑

j n0
j

)
+ �νζ

= νi

�ν
; or

n0
i(∑

j n0
j

) = νi

�ν
(29)
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Equations 30 and 31 can be obtained from Eq. 29

n0
i

⎛
⎝νi +

∑
j �=i

ν j

⎞
⎠ − νi

⎛
⎝n0

i +
∑
j �=i

n0
j

⎞
⎠ = n0

i

∑
j �=i

ν j − νi

∑
j �=i

n0
j = 0 (30)

n0
i∑

j �=i n0
j

= νi∑
j �=i ν j

(31)

Equation 31 is just a general form of Eq. 28, i.e. Eq. 20 is equivalent to Eq. 31 which
takes into account that the initial numbers of moles of products are non-zero as shown
in Eq. 27 (row ii). The fact that Eqs. 20 and 28 are equivalent is a direct consequence
of theorem 5. A proof of theorem 1 in terms of n0

i has been given as Proof P3 in part
I of this work.

2.3.2 Conditions for maximizing the mole fraction of a product

We consider the specific reaction given in Eq. 32

a A + bB = cC (32)

In [4] it is proved that the optimum condition for maximizing the mole fraction of
the product C in this reaction is given by Eq. 33.

n0
A

n0
B

= a

b
(33)

The conditions for the maximum equilibrium concentration of product in theorem
6 have been derived in part I of this work more generally than in [4]. From theorem
5, the optimum condition given by Eq. 33 [4] which involves n0

r of the reactant is
equivalent to that given in Eq. I-53 which involves n j together with non-zero values
of n p′ for products. In fact, Eq. I-53 is more general than the literature formula [4]
since it allows for the presence of products. The conditions at time t in row (ii) of
the reaction given by Eq. 27 can be evolved from the conditions at t = 0 in (i). So,
by theorem 5, the condition for t = 0 is equivalent to that at time t. Every condition
for equilibrium properties expressed in ni can be converted to an equivalent condition
expressed in n0

i according to theorem 5. For example, by inserting Eq. I-2 into Eq. I-20
or I-53, we obtain Eq. 34 which is a general form of Eq. 33.

n j

nk
= n0

j + ν jζ

n0
k + νkζ

= ν j

νk
⇒ n0

i

n0
j

= νi

ν j
(34)

Previous discussion in the literature [4] is based upon a specific equation such as
Eq. 32 when ζ = 0 as shown in Eq. 27, with initial conditions given at row (i), where
no products exist when the reaction extent is 0. We, however, started more generally
from Eq. I-1 and the Lagrange multiple constant method, with initial conditions after
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time t given by row (ii) as well as that at time 0 by row (i) but allowing n0
C and n0

D to
be non-zero.

2.3.3 Connection between theorems 4 and 6

We now show that theorem 4 is a specific case of theorem 6. When adding product p,
xp will increase according to theorem 4. So, the product p should not be included in
Eq. I-53 since no maximum value of xp can be reached as more p is added. We will
show that the general Lagrange multiple constant method in Proof P10 is also valid
for this situation. We now show that the general Lagrange multiple constant method
can also be used to derive Eq. I-45. However, we first need to establish how Eq. I-57
(or I-56 which differs only by the sub-index) is obtained via the Lagrange multiple
constant method. Equations I-39 and I-40 can be combined as (I-39) + λ (I-40), to
give Eq. 35.

(
∂x p

∂n0
k

)
Kx

+ λ

(
∂ Qx

∂n0
k

)
Kx

=
⎡
⎣

(
∂x p

∂n0
k

)
ζ

+ λ

(
∂ Qx

∂n0
k

)
ζ

⎤
⎦

+
[(

∂x p

∂ζ

)
n0

j

+ λ

(
∂ Qx

∂ζ

)
n0

j

] (
∂ζ

∂n0
k

)
Kx

(35)

where λ is a constant which is specified from Eq. 36.

[(
∂x p

∂ζ

)
n0

j

+ λ

(
∂ Qx

∂ζ

)
n0

j

]
= 0 (36)

which on rearrangement gives Eq. 37

λ = −

(
∂x p
∂ζ

)
n0

j(
∂ Qx
∂ζ

)
n0

j

(37)

When Eq. 37 is inserted into Eq. 35, the last term on the right hand side of Eq. 35
vanishes. Setting the first term on the right hand side of Eq. 35 to 0, we then obtain
Eq. I-57, which represents the condition for the Lagrange conditional maximum.

(
∂x p

∂n0
k

)
ζ

+ λ

(
∂ Qx

∂n0
k

)
ζ

= 0 (I-57)

Inserting Eq. 37 into Eq. I-57 and letting k = p, we obtain Eq. 38.
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(
∂x p

∂n0
p

)
ζ

−
(

∂ Qx

∂n0
p

)
ζ

(
∂x p
∂ζ

)
n0

j(
∂ Qx
∂ζ

)
n0

j

=
(

∂x p

∂n0
p

)
ζ

+
(

∂x p

∂ζ

)
n0

j

(
∂ζ

∂n0
p

)
Kx

(38)

Equation 38 is equivalent to Eq. I-42 or I-45. So, theorem 4 represents a special
case of theorem 6. Thus, when product p is involved, theorem 4 applies and it implies
that adding product p will increase xp. When p is in large excess, xp approaches 1. So,
in theorem 6, p has been excluded.

2.4 Effects of scale upon chemical equilibrium

An application of the theorems is given to show that the rules or patterns for small scale
experiments in the laboratory might be different from those for large scale industrial
applications. Let us consider the simple reaction for the formation of methanol given
in Eq. 39.

CO(g) + 2H2(g) = CH3OH(g) (39)

example 1 1 m 0

1 − ζ m − 2ζ ζ

example 2 R 1 0

R − ξ 1 − 2ξ ξ

1, m, and R in Eq. 39 are the initial numbers of moles. ζ and ξ are the reaction extents
for the two examples. Suppose the equilibrium constant Kx is 2.97 at a specific T and
P. Then for example 1

Kx = ζ(1 + m − 2ζ )2

(1 − ζ ) (m − 2ζ )2 = 2.97 (40)

And for example 2

Kx = ξ(1 + R − 2ξ)2

(R − ξ) (1 − 2ζ )2 = 2.97 (41)

In example 1, we now assume that the initial mole ratio m varies between 0.5 and 5.0
while in example 2, it varies between 2.0 and 0.2. The resulting equilibrium quantities
calculated using Eqs. 40 and 41 are given in Table 1.

The reaction extent ξ has a maximum value at xCO = 0.5 predicted from Eq. 20
or R = 1 predicted from Eq. 31 for example 2 (Table 1). The conclusions predicted
from Eqs. 20 and 31 are the same because of theorem 5. While for example 1, the
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maximum value can be theoretically achieved at xH2
= 1 or m = ∞ from Eqs. 20

and 31, respectively. But these conditions cannot pertain. Thus, ζ has no maximum
value. Note that xCO increases when R is increased from 0.2 through 1 although the
reaction will reduce the amount of CO as predicted by Eq. 18. The result conforms to
theorem 4.

Let m = 0.5 in example 1. Then scale up by a factor of 2 such that initial numbers
of moles for CO and H2 are 2 and 1, respectively, which is equivalent to example 2
when R = 2. The calculated equilibrium concentrations xi for the two examples are
identical as shown in Table 1. When the concentrations in example 1 are scaled down
m times, the initial amount of reactants becomes 1/m and 1 and the reaction extent is
similarly scaled down as indicated by Eq. 42.

ξ = ζ

m
(42)

Also, the first two columns for example 1 will become equivalent to the third and
fourth columns for example 2. However, for the reaction extent, example 2 shows a
maximum while example 1 does not, despite the fact that the two examples only differ
from each other by a multiplication factor. This can be explained as follows:

From Eqs. 2, I-12, and I-82, we can generate Eq. 43.

(
∂ζ

∂n0
H2

)
Kx ,nCO

=
(

∂ζ

∂m

)
Kx ,nCO

=−

(
∂ Qx

∂n0
H2

)
ζ,n0

CO(
∂ Qx
∂ζ

)
n0

Co

=
n0

H2

∑
i �=H2

νi −νH2

∑
i �=H2

n0
i

n0
H2

[∑
i

ni
∑
i

ν2
i

ni
−

(∑
i

νi

)2
]

(43)

∑
i �=H2

νi = 0,
∑

i �=H2
n0

i = n0
CO = 1, n0

H2
= m, and νH2 = −2. So, the numerator

of Eq. 43 is positive and constant but
(

∂ζ
∂m

)
Kx ,nCO

is variable because the denominator

of Eq. 43 is variable.

Table 1 Initial mole ratio, equilibrium reaction extents and equilibrium concentration

Example 1 Example 2 Equilibrium concentration

m ζ R ξ xCH3OH xH2 xCO

0.500 0.117 2.000 0.234 0.092 0.210 0.698

0.670 0.163 1.500 0.244 0.121 0.255 0.624

1.000 0.250 1.000 0.250 0.167 0.333 0.500

2.000 0.450 0.500 0.225 0.214 0.524 0.262

3.000 0.560 0.333 0.185 0.194 0.651 0.151

4.000 0.620 0.250 0.154 0.164 0.735 0.102

5.000 0.650 0.200 0.130 0.138 0.787 0.074
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We differentiate Eq. 42 with respect to m under equilibrium conditions to obtain
Eq. 44.

(
∂ξ

∂m

)
Kx

=
(

∂
ζ
m

∂m

)
Kx

= −

(
∂ζ
∂m

)
Kx

m − ζ

m2 =

(
∂ζ
∂m

)
Kx

− ζ
m

m
(44)

Although ζ has no maximum value with respect to m, it has a maximum value when

the system is reduced by a factor of m. That is when
(

∂ξ
∂m

)
Kx

in Eq. 44 has a critical

point, or when
(

∂ζ
∂m

)
Kx

in Eq. 44 changes from >= to <= ζ
m .

This example shows that mathematics can be used to investigate different patterns
in a scaled reaction.

2.5 The problems inherent in the traditional formulation of the Le Chatelier Principle

A system can be described with many pairs of conjugated variables such as xi and ni;
T and q, the amount of heat absorbed; or P and V. If no equilibrium exists, then when
applying an action such as increasing the intensive variable xi, T or P, then the system
will respond by generating a reaction and increasing the relevant conjugated extensive
variable ni, q or decreasing V. Conversely if the applied action is the change in the
extensive variable ni, q or V, the reaction will be the change in the intensive variable
xi, T or P. The traditional Le Chatelier Principle is often expressed by one or other of
the two different statements S2 and S3.

S2: An equilibrium shift is always counteracts the action.
S3: An equilibrium shift is always counteracts the reaction.

However it is obvious that S2 and S3 cannot be correct at the same time. When S2 is
correct then S3 must be wrong and vice versa. For example consider the equilibrium of
liquid and gaseous water. If we define increasing P or decreasing T as the action, then
it can be shown that S2 gives the correct prediction, but that S3 does not. S3 predicts
that the equilibrium will shift by converting more liquid water to gaseous water to
counteract the decrease in V or increase in q, thus decreasing the heat released to the
environment. But this is wrong since increasing P or decreasing T should shift the
equilibrium to convert more gaseous water to liquid water. Thus S3 is wrong although
S2 is correct in this case. Conversely if we define decreasing V or q as the action, then
S3 provides the correct result but S2 does not as it predicts that the equilibrium will
counteract the decrease in V or q by converting more liquid water to gaseous water.
But in reality decreasing V or q will result in more gaseous water being converted to
liquid water by an equilibrium shift. Thus in this instance, S2 is wrong while S3 is
correct.

However, if we use theorem 3 and note that xi, T or P are intensive and ni, q or
V are extensive variables, it is easy to show that the correct predictions are obtained
for both the above cases. Indeed we have already shown that Eq. 1 requires a reaction
to reduce xi [from (b) to (c) in Fig. 1] after i is added, independent of whether the
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Table 2 Calculations from the Haber process (Eq. 45), using Eqs. 46–51

R ζ nN2 nH2 nNH3 nT xN2 xH2 xNH3

(i) 1 0.2330 0.7670 0.3409 0.4661 1.5340 0.5000 0.1962 0.3038
(ii) 2 0.2330 1.7670 0.3049 0.4661 2.5340 0.6973 0.1182 0.1839
(iii) 2 0.2284 1.7716 0.3147 0.4569 2.5432 0.6966 0.1237 0.1797

(i): Original equilibrium state; (ii): 1 mol of N2 is added to equilibrium state (i) while �ζ = 0; (iii): new
equilibrium state where �ζ < 0

chemical equilibrium is shifted to produce or to consume more of the added species
(Section 2.2.3.5). The predication obtained from Eq. 1 is consistent with theorem 3
when ni and xi are involved. Thus Eq. 1 and theorem 3 are generally applicable while
S2 and S3 are not.

3 Conclusions

It is paramount that a theoretical system needs to be coherent and extensive
[7–10]. Through the innovative application of mathematical techniques, the connec-
tions between the theorems introduced in Part I of this work are discussed in detail.
Graphical representations (Figs. 1, 2) of theorems 3 and 4 are presented consistent with
the rigorous mathematical derivations. Based on a solid mathematical background, it
is shown that the equilibrium will always shift to reduce xi in a closed system follow-
ing the adidtion of i thus according to theorem 3 following the process from (b) to
(c) in Fig. 1. However, according to theorem 4, the equilibrium shifts to increase xi
following the process from (a) to (c) in Fig. 1 when ni is increased in an open system.
In this process as species i is added, the equilibrium might shift to increase xj (j �= i)
as shown in Appendix 1. It has been shown that the conditions to obtain the maximum
mole fraction of a target product and the maximum conversion ratio of reactant are
connected mathematically. A variety of mathematical approaches are established to
judge the direction of equilibrium shift. It is demonstrated that it is useful to express
the equilibrium properties for a closed system either in terms of initial mole numbers
or by equilibrium concentrations xi and that these are essentially equivalent. Different
patterns in a scaled reaction are also investigated by the application of the theorems.
Through the applications, it has been shown that the theorems are connected as a
coherent system.

Great effort has been paid in chemistry education to avoid sophisticated mathemat-
ical treatments [11–13]. Contrary to the prevalent beliefs, we reckoned that concepts
derived from mathematical method can only be fully explained by evoking the relevant
mathematical reasoning [14,15]. The innovations based on original thought should be
valued much more than the experimental reports based on advanced apparatus. It has
long been realized that the image of chemistry (the image of learning by rote and super-
ficial explanation) needs to be changed by reform in chemical education [16,17]. It
can be argued that chemistry is not a laboratory science [18,19] and therefore that one
way to reform chemical education is to introduce more mathematical logic to reflect
modern achievements of chemistry. The material introduced here is consistent with
that aim and is suitable for use in mathematical course for chemistry students to show
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the capability of mathematical techniques to solve chemical problems. It can also
be used independently for upper-division undergraduate or graduate as an advanced
course to enhance the students’ theoretical basis of equilibrium theory.
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Appendix 1: Non-conjugated variables: the Haber process

It is interesting to note that Figs. 1 and 2 only apply to conjugated variables such as
ni and xi. However in this Appendix we consider what happens when non-conjugated
variables such as nT the total amount of moles in the system and xj the concentration
of one of the species are considered together. Consider the Haber process to form
ammonia from dinitrogen and dihydrogen.

N2(g) + 3H2(g) = 2NH3(g)

R 1 0

R − ∣∣νN2

∣∣ ζ 1 − ∣∣νH2

∣∣ ζ νNH3ζ K X = 24.46
(45)

Qx = x2
NH3

x2
H2

xN2

(46)

xNH3 = nNH3

nT
= νNH3ζ

nT
(47)

xN2 = nN2

nT
= R − ∣∣νN2

∣∣ ζ
nT

(48)

xH2 = nH2

nT
= 1 − ∣∣νH2

∣∣ ζ
nT

(49)

nT = nN2 + nH2
+ nNH3 = (R − |νN2 |ζ ) + (1 − |νH2

|ζ ) + νNH3ζ

= 1 + R + (νNH3 − |νH2
| − |νN2 |)ζ = 1 + R + �νζ (50)

�ν = 2 − 3 − 1 = −2 (51)

Table 2 lists the results calculated from Eq. 45 using Eqs. 46–51 where R takes the
values of 1 and 2.

When 1 more mole of N2 is added to equilibrium state (i), xN2 increases from
0.5000 to 0.6973 as predicted by Eq. I-43 when ζ remains unchanged at 0.2330. The
state of the system goes from (i) to (ii). When the reaction starts to respond, the equi-
librium shifts backwards from ζ = 0.2330 to ζ = 0.2284. xN2 decreases from 0.6973
to 0.6966, conforming to theorem 3. The state of the system goes from (ii) to (iii).
From (i) to (iii), the equilibrium xN2 increases from 0.5000 to 0.6966, conforming to
theorem 4. While for H2, xH2 decreases from 0.1962 to 0.1182 for (i) to (ii) because of
the addition of N2, and increases from 0.1182 to 0.1237 for (ii) to (iii). The backward
reaction decreases xN2 but increases xH2 .
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The data can be analyzed from another angle. The effect on H2 of adding 1 more
mole of N2 to (i) is equivalent to that of adding 1 more mole of unreactive (inert)
species. xH2 will therefore decrease following the dilution from (i) to (ii). By theorem
2a, the reaction will then go backwards from (ii) to (iii). According to theorem 2a or
3, the equilibrium shift will reduce the dilution. Thus, xH2 increases from (ii) to (iii).
In order for the backward reaction to reduce xH2 , Eq. 17 must be satisfied for H2. But
this is impossible since it requires xH2 > (−3)/(−2). This case can be analyzed in a
manner similar to that given in Sect. 2.2.3.5. Strictly speaking, the above analysis is
only applicable for infinitesimal changes. If H2 is added instead of N2, the equilibrium
will shift forward to consume the reactants since the effect from theorem 2b becomes
dominant. The same analysis applies to section 2.4.
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